本文是LLM系列文章,针对《Whispers that Shake Foundations: Analyzing and Mitigating False Premise Hallucinations in Large Language Models》的翻译。
摘要
大型语言模型(LLM)已经显示出令人印象深刻的功能,但仍然存在幻觉问题。这一问题的一个重要类型是假前提幻觉,我们将其定义为LLM在面对假前提问题时产生幻觉文本的现象。在本文中,我们对假前提幻觉进行了全面的分析,并阐明了其内部工作机制:一小部分注意力头(我们称之为假前提头)干扰了知识提取过程,导致了假前提幻觉的发生。基于我们的分析,我们提出了一种新的、有效的减轻假前提幻觉的方法——FAITH(用于制造幻觉的假前提注意头约束)。它约束了模型推理过程中的假前提注意头。令人印象深刻的是,大量的实验表明,仅约束模型中约1%的注意力头会显著提高模型性能近20%。