Analyzing and Mitigating False Premise Hallucinations in Large Language Models

828 篇文章

已下架不支持订阅

本文深入分析大型语言模型(LLM)的假前提幻觉问题,发现特定注意力头导致此问题。提出FAITH方法,通过约束这些注意力头,显著提升模型性能约20%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Whispers that Shake Foundations: Analyzing and Mitigating False Premise Hallucinations in Large Language Models》的翻译。

撼动根基的细语:分析和缓解大型语言模型中的虚假前提幻觉

摘要

大型语言模型(LLM)已经显示出令人印象深刻的功能,但仍然存在幻觉问题。这一问题的一个重要类型是假前提幻觉,我们将其定义为LLM在面对假前提问题时产生幻觉文本的现象。在本文中,我们对假前提幻觉进行了全面的分析,并阐明了其内部工作机制:一小部分注意力头(我们称之为假前提头)干扰了知识提取过程,导致了假前提幻觉的发生。基于我们的分析,我们提出了一种新的、有效的减轻假前提幻觉的方法——FAITH(用于制造幻觉的假前提注意头约束)。它约束了模型推理过程中的假前提注意头。令人印象深刻的是,大量的实验表明,仅约束模型中约1%的注意力头会显著提高模型性能近20%。

1 引言

2 背景

3 数据构建

4 幻觉分析

5 幻觉缓解

6 相关工作

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值