Large Language Model Meets Graph Neural Network in Knowledge Distillation

本文介绍了一种名为LinguGKD的框架,通过知识蒸馏将大型语言模型(LLM)的复杂语义能力传授给图神经网络(GNN)。该框架在不增加额外数据或模型参数的情况下,显著提升GNN的预测精度和收敛速度,降低计算和存储需求,解决了LLM的高计算成本和长延迟问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Model Meets Graph Neural Network in Knowledge Distillation》的翻译。

在知识蒸馏中大型语言模型与图神经网络相遇

摘要

尽管最近社区披露了大型语言模型(LLM)在理解文本属性图(TAG)方面的进步和潜在应用,但LLM的高计算和存储要求以及模型推理过程中的长延迟阻碍了其在生产中的部署。同时,尽管传统的图神经网络(GNN)轻权重,善于学习图的结构特征,但它们掌握TAG中复杂语义的能力在实际应用中受到一定的限制。为了解决这些局限性,我们专注于TAG中节点分类的下游任务,并提出了一种新的图知识蒸馏框架,称为语言图知识蒸馏(LinguGKD),使用LLM作为教师模型,GNN作为学生模型进行知识蒸馏。它涉及在设计的定制提示上对LLM进行面向TAG的指令调整,然后传播知识,并在潜在空间中将从教师LLM到学生GNN的分层学习节点特征对齐,采用分层自适应对比学习策略。通过在各种LLM和GNN模型以及多个基准数据集上进行广泛的实验,所提出的LinguGKD显著提高了学生GNN的预测精度和收敛速度,而不需要额外的数据或模型参数。与教师LLM相比,蒸馏GNN在一些基准数据集上超过了教师LLM的分类精度,在计算和存储需求少得多的情况下实现了卓越的推理速度。

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值