A Survey on Large Language Model Hallucination via a Creativity Perspective

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)中的幻觉现象,从创造力的角度审视其潜在价值。研究表明,尽管幻觉通常被视为局限性,但它们也可能激发LLM的创造力。通过对幻觉的分类、影响及历史案例的分析,文章提出了利用LLM幻觉进行创造的可能性,并讨论了未来的研究方向,包括理论探索、数据集构建、方法优化和多模态应用等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《A Survey on Large Language Model Hallucination via a Creativity Perspective》的翻译。

摘要

大型语言模型(LLM)中的幻觉总是被视为局限性。然而,它们是否也是创造力的源泉?这项调查探讨了这种可能性,表明幻觉可能通过培养创造力来促进LLM的应用。这项调查首先回顾了幻觉的分类及其对关键应用中LLM可靠性的负面影响。然后,通过历史实例和最近的相关理论,调查探讨了幻觉在LLM中的潜在创造性益处。为了阐明这种联系的价值和评估标准,我们深入研究了创造力的定义和评估方法。在发散和趋同思维阶段的框架下,本调查系统地回顾了关于在LLM中转化和利用幻觉创造的文献。最后,该调查讨论了未来的研究方向,强调需要进一步探索和完善幻觉在LLM创造性过程中的应用。

1 引言

2 LLM时代的幻觉

3 幻觉中隐藏的创造力

4 大型语言模型的创造力

5 利用LLM幻觉进行创造

6 结论和未来工作

6.1 结论

本文重新审视了LL

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值