本文是LLM系列文章,针对《BreakGPT: A Large Language Model with Multi-stage Structure for Financial Breakout Detection》的翻译。
摘要
交易区间突破(TRB)是金融交易技术分析的一种关键方法,广泛应用于股票、期货和外汇等金融市场的交易员。然而,区分真实和虚假突破以及提供正确的理由给投资者带来了重大挑战。最近,大型语言模型在各种下游应用程序中取得了成功,但在金融突破检测领域的有效性一直较差。原因是漏诊检测需要独特的数据和特定的知识。为了解决这些问题,我们引入了BreakGPT,这是第一个用于金融突破检测的大型语言模型。此外,我们还为大型语言模型开发了一种新的框架,即多级结构,有效地减少了下游应用程序中的错误。实验结果表明,与GPT3.5相比,BreakGPT将答案的准确性和合理性提高了44%,多级结构对提高的贡献率为17.6%。此外,它的性能优于ChatGPT-4 42.07%。我们的代码是公开的:https://github.com/Neviim96/BreakGPT。