An Iteratively Refining Method for Eliciting Knowledge from Large Language Models

828 篇文章

已下架不支持订阅

本文介绍了一种名为特异性链(CoS)的迭代方法,用于从大型语言模型(LLM)中提取知识并确保遵循特定约束。CoS在多个复杂数据集上表现优于现有技术,尤其在生成特定内容方面。通过蒸馏,CoS还能增强小型模型遵循约束指令的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Chain-of-Specificity: An Iteratively Refining Method for Eliciting
Knowledge from Large Language Models》的翻译。

特异性链:一种从大型语言模型中提取知识的迭代精炼方法

摘要

大型语言模型(LLM)表现出非凡的生成能力,能够生成有价值的信息。尽管取得了这些进步,但先前的研究发现,LLM有时难以遵守特定的约束条件(例如,在特定的地点或特定的时间),有时甚至忽视了这些约束条件,这导致了过于笼统或不完全令人满意的反应。现有的方法试图通过分解或重写输入指令来解决这个问题,但它们在充分强调特定约束和解锁底层知识(例如,在软件开发的背景下编程)方面做得不够。作为回应,本文提出了一种简单而有效的方法——特异性链(CoS)。具体来说,CoS迭代地强调输入指令中的特定约束,解锁LLM中的知识,并细化响应。在公开的和自建的复杂数据集上进行的实验表明,CoS在增强生成内容方面优于现有方法,尤其是在特异性方面。此外,随着特定约束数量的增加,其他基线也会动摇,而CoS仍然表现良好。此外,我们还表明,提取由CoS生成的响应有效地增强了较小模型遵循约束指令的能力。本文的资源将被公布以供进一步研究。

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值