LlaSMol LLM for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset

828 篇文章

已下架不支持订阅

本文介绍了LlaSMol,一个通过大规模、全面、高质量的化学指令数据集SMolInstruct进行调优的LLM。LlaSMol在14个化学任务上超越GPT-4,接近任务特定SoTA模型。研究还揭示了参数训练的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale, Comprehensive, High-Quality Instruction Tuning Dataset》的翻译。

LlaSMol:用大规模、全面、高质量的指令调优数据集推进大型化学语言模型

摘要

化学在许多领域发挥着至关重要的作用,如药物发现和材料科学。虽然GPT-4等大型语言模型在自然语言处理任务上表现出非凡的能力,但现有工作表明,它们在化学任务上的性能低得令人沮丧。然而,在本文中,我们证明了我们开发的LLM可以在一组全面的化学任务上取得非常好的结果,在所有任务中都大大优于最先进的GPT-4,并接近SoTA任务特定模型。我们成功的关键是一个名为SMolInstruction的大规模、全面、高质量的指令调优数据集。它包含14项精心挑选的化学任务和300多万个高质量样本,为化学LLM的训练和评估奠定了坚实的基础。基于SMolDirective,我们对一组开源LLM进行了微调,其中,我们发现Mistral是化学任务的最佳基础模型。我们进一步分析了可训练参数的影响,为未来的研究提供了见解。

1 引言

2 相关工作

3 前言

4 SMolInstruct</

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值