Large Language Models As Faithful Explainers

828 篇文章

已下架不支持订阅

本文介绍了一种名为xLLM的框架,旨在提高大型语言模型(LLM)自然语言解释的忠实度。针对LLM决策过程的复杂性,xLLM通过量化解释的忠实度并迭代优化来确保解释与LLM行为的一致性。实验显示xLLM在多个NLU数据集上能显著提升解释的可信度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models As Faithful Explainers》的翻译。

作为忠实解释者的大型语言模型

摘要

大型语言模型(LLM)最近通过利用其丰富的内部知识和推理能力,熟练地处理复杂的任务。因此,这种复杂性阻碍了传统的以输入为中心的解释算法来解释LLM的复杂决策过程。因此,通过自然语言格式的单一前馈推理来自我解释其预测的最新进展已经出现。然而,自然语言解释往往因缺乏忠实性而受到批评,因为这些解释可能无法准确反映LLM的决策行为。在这项工作中,我们引入了一个生成解释框架xLLM,以提高LLM的自然语言格式解释的可信度。具体来说,我们提出了一个评估者来量化自然语言解释的忠实度,并通过xLLM的迭代优化过程来提高忠实度,目的是最大化忠实度得分。在三个NLU数据集上进行的实验表明,xLLM可以显著提高生成解释的可信度,这与LLM的行为一致。

1 引言

2 前言

3 xLLM:解释者LLM框架

4 实验

5 结论

在本文中,我们提出了一个生成解释框架xLLM,以产生准确捕捉LLM预测行为的忠实解释。我们的框架采用了保真度

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值