Prompt4Vis: Prompting LLMs with Example Mining and Schema Filtering for Tabular Data Visualization

828 篇文章

已下架不支持订阅

Prompt4Vis是一个利用大型语言模型进行数据可视化的框架,通过多目标示例挖掘和模式过滤提高性能。与现有方法相比,Prompt4Vis在NVBench数据集上的实验显示了显著优势,特别是在上下文学习方面。该工作强调了在文本到视觉任务中选择合适示例和减少冗余信息的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Prompt4Vis: Prompting Large Language Models with Example
Mining and Schema Filtering for Tabular Data Visualization》的翻译。

Prompt4Vis:使用示例挖掘和模式过滤提示大型语言模型实现表格数据可视化

摘要

数据可视化(DV)系统因其从庞大的数据集中揭示见解的深刻能力而越来越受到认可,在工业界和学术界都引起了关注。在某些声明性可视化语言(DVL,例如Vega-Lite、EChart.)中,制作数据查询是一个必不可少的过程。自然语言处理(NLP)技术的发展简化了自然语言界面的使用,使表格数据可视化,提供了更易于访问和直观的用户体验。然而,当前将自然语言问题转换为数据可视化查询的方法,如Seq2Vis、ncNet和RGVisNet,尽管使用了复杂的神经网络架构,但仍达不到预期,还有很大的改进空间。
大型语言模型(LLM),如ChatGPT和GPT-4,已经在各种NLP任务中建立了新的基准,从根本上改变了该领域的格局。受这些进步的启发,我们引入了一个新的框架Prompt4Vis,利用LLM和上下文学习来提高从自然语言生成数据可视化的性能。Prompt4Vis包括两个关键组件:(1)多目标示例挖掘模块,

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值