本文是LLM系列文章,针对《Prompt4Vis: Prompting Large Language Models with Example
Mining and Schema Filtering for Tabular Data Visualization》的翻译。
摘要
数据可视化(DV)系统因其从庞大的数据集中揭示见解的深刻能力而越来越受到认可,在工业界和学术界都引起了关注。在某些声明性可视化语言(DVL,例如Vega-Lite、EChart.)中,制作数据查询是一个必不可少的过程。自然语言处理(NLP)技术的发展简化了自然语言界面的使用,使表格数据可视化,提供了更易于访问和直观的用户体验。然而,当前将自然语言问题转换为数据可视化查询的方法,如Seq2Vis、ncNet和RGVisNet,尽管使用了复杂的神经网络架构,但仍达不到预期,还有很大的改进空间。
大型语言模型(LLM),如ChatGPT和GPT-4,已经在各种NLP任务中建立了新的基准,从根本上改变了该领域的格局。受这些进步的启发,我们引入了一个新的框架Prompt4Vis,利用LLM和上下文学习来提高从自然语言生成数据可视化的性能。Prompt4Vis包括两个关键组件:(1)多目标示例挖掘模块,