Uncertainty-Aware Explainable Recommendation with Large Language Models

828 篇文章

已下架不支持订阅

本文介绍了一种利用大型语言模型(LLM)GPT-2生成推荐系统解释的新型方法。通过将用户和项目ID向量作为提示,采用多任务学习框架进行联合训练,优化推荐和解释任务,提升推荐效率和用户满意度。实验表明,这种方法在多个数据集上的可解释性指标优于现有SOTA方法,同时保证了文本质量的稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Uncertainty-Aware Explainable Recommendation with Large Language Models》的翻译。

基于大型语言模型的不确定性可解释推荐

摘要

在推荐系统内提供解释将提高用户满意度并促进信任,特别是通过详细说明选择适合用户的推荐项目的原因。该领域的主要方法围绕着生成基于文本的解释,特别强调应用大型语言模型(LLM)。然而,由于时间限制和计算资源限制,为可解释的建议改进LLM被证明是不切实际的。作为一种替代方案,当前的方法包括训练提示而不是LLM。在这项研究中,我们开发了一个模型,该模型利用用户和项目输入的ID向量作为GPT-2的提示。我们在多任务学习框架内采用了联合训练机制来优化推荐任务和解释任务。这一策略能够更有效地探索用户的兴趣,提高推荐效率和用户满意度。通过实验,我们的方法在Yelp、TripAdvisor和Amazon数据集上分别实现了1.59 DIV、0.57 USR和0.41 FCR,在可解释性评估指标方面优于四种SOTA方法。此外,我们发现所提出的模型能够确保三个公共数据集上稳定的文本质量。

1 引言

2 相关工作

3 方法

4 实验

5 结论

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值