PhaseEvo: Towards Unified In-Context Prompt Optimization for Large Language Models

828 篇文章

已下架不支持订阅

本文提出了一种新的框架PHASEVO,用于优化大型语言模型(LLM)的提示,解决了现有工作将指令优化和上下文学习分离的问题。通过结合LLM的生成能力和进化算法的全局搜索,PHASEVO在35项基准任务中展现出优越性能,同时保持了较高的计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《PhaseEvo: Towards Unified In-Context Prompt Optimization for Large Language Models》的翻译。

PhaseEvo:面向大型语言模型的统一上下文提示优化

摘要

为大型语言模型(LLM)制作一个理想的提示是一项具有挑战性的任务,需要大量的资源和专家的人力投入。现有工作将提示指令的优化和上下文学习示例视为不同的问题,导致次优的提示表现。本研究通过建立一个统一的上下文提示优化框架来解决这一局限性,该框架旨在实现提示指令和示例的联合优化。然而,在离散和高维的自然语言空间中制定这样的优化方案在收敛性和计算效率方面带来了挑战。为了克服这些问题,我们提出了PHASEVO,这是一个有效的自动提示优化框架,它将LLM的生成能力与进化算法的全局搜索能力相结合。我们的框架采用了多阶段设计,结合了创新的基于LLM的变异算子,以提高搜索效率并加速收敛。我们在35项基准任务中对我们的方法进行了广泛的评估。结果表明,PHASEVO在保持良好效率的同时,显著优于最先进的基线方法。

1 引言

2 前言

3 方法

4 实验

5 相关工作

6 结论

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值