本文是LLM系列文章,针对《FinGPT-HPC: Efficient Pretraining and Finetuning Large Language Models for Financial Applications with High-Performance Computing》的翻译。
FinGPT HPC:用于高性能计算的金融应用程序的高效预训练和微调大型语言模型
摘要
大型语言模型(LLM)是计算密集型的。计算工作负载和内存占用空间随维度(层宽度)呈二次方增长。LLM的大多数参数来自transformer结构的线性层,并且是高度冗余的。这些线性层贡献了80%以上的计算工作量和99%的模型大小。为了有效地预训练和微调LLM,有三个主要挑战需要解决:1)减少线性层的冗余;2) 减少GPU内存占用;3) 在使用分布式训练时提高GPU利用率。现有的方法,如LoRA和QLoRA,分别利用低秩矩阵和量化来减少可训练参数的数量和模型大小。然而,生成的模型仍然会消耗大量的GPU内存。在本文中,我们提出了基于GPU的高性能方法,这些方法利用低秩结构来预训练和微调金融应用的LLM。我们用两个更窄的线性层代替transformer结构的一个传统线性层,这使我们能够将参数的数量减少几个数量级。通过将参数量化为低精度(8位和4位),进一步减少了所得模型的内存消耗。与现有的LLM相比,我们的方法在没有精度下降的情况下实现了1.3倍的加速和2.64