LEVERAGING LARGE LANGUAGE MODELS FOR ENHANCED NLP TASK PERFORMANCE THROUGH KNOWLEDGE DISTILLATION

828 篇文章

已下架不支持订阅

本文探讨如何通过知识蒸馏和优化训练策略,利用GPT-4等大型语言模型提升BERT在命名实体识别(NER)任务中的表现。研究采用三阶段训练,首先使用GPT-4注释数据,然后结合原始数据训练BERT,发现先使用蒸馏数据训练能显著提高性能。此外,研究还关注数据混合技术,如sigmoid和幂衰减,以进一步优化效果。这种方法降低了手动注释成本,适用于资源有限的环境,并为未来NLP任务提供了改进方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《LEVERAGING LARGE LANGUAGE MODELS FOR ENHANCED NLP TASK PERFORMANCE THROUGH KNOWLEDGE DISTILLATION AND OPTIMIZED TRAINING STRATEGIES》的翻译。

利用大型语言模型通过知识蒸馏和优化训练策略提高NLP任务性能

摘要

GPT-4等新兴的大型语言模型(LLM)彻底改变了自然语言处理(NLP),在命名实体识别(NER)等传统任务中显示出潜力。我们的研究探索了一种三阶段训练策略,该策略利用GPT-4的能力来提高BERT模型在NER上的性能。最初,GPT-4在不进行微调的情况下注释CONLL2003的一个子集和额外的BBC数据集。然后,我们使用原始数据和LLM注释数据的组合来训练BERT,分析LLM注释相对于传统方法的有效性。
第二阶段涉及不同训练方案的比较实验,评估蒸馏数据和原始数据之间的协同作用。我们观察到,顺序策略,特别是先用蒸馏的数据进行训练,然后再用原始数据进行训练的简单组合,可以显著提高性能。在第三阶段,我们研究了各种数据混合技术,包括sigmoid函数和幂衰减函数,以进一步优化训练过程。我们的研究结果表明,蒸馏数据和原始数据的战略性组合显著提高了BERT的NER能力。
我们的方法提供了一种可扩展的方法,可以降低手动注释成本并提高效率,

已下架不支持订阅

### Retrieval-Augmented Generation in Knowledge-Intensive NLP Tasks Implementation and Best Practices The method of retrieval-augmented generation (RAG) for knowledge-intensive natural language processing tasks aims to combine the strengths of dense vector representations with sparse exact match methods, thereby improving model performance on tasks that require access to external information not present during training[^1]. This approach ensures models can retrieve relevant documents or passages from a large corpus at inference time and generate responses conditioned on this retrieved context. #### Key Components of RAG Framework A typical implementation involves two main components: 1. **Retriever**: A component responsible for fetching potentially useful pieces of text based on input queries. 2. **Generator**: An encoder-decoder architecture like BART or T5 which generates outputs given both the query and retrieved contexts as inputs. This dual-stage process allows systems to leverage vast amounts of unstructured data without needing explicit retraining when new facts become available. #### Practical Steps for Implementing RAG Models To effectively implement such an architecture, one should consider several factors including but not limited to choosing appropriate pre-trained retrievers and generators fine-tuned specifically towards question answering or similar objectives where factual accuracy is paramount. Additionally, integrating these modules into existing pipelines requires careful consideration regarding latency constraints versus quality trade-offs especially under real-time applications scenarios. For instance, here's how you might set up a simple pipeline using Hugging Face Transformers library: ```python from transformers import RagTokenizer, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") def rag_pipeline(question): inputs = tokenizer([question], return_tensors="pt", truncation=True) generated_ids = model.generate(input_ids=inputs["input_ids"]) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return output ``` In practice, tuning hyperparameters associated with each stage separately could lead to better overall results compared to treating them monolithically due to their distinct roles within the system design. #### Best Practices When Working With RAG Systems When deploying RAG-based solutions, adhering to certain guidelines helps maximize effectiveness while minimizing potential pitfalls: - Ensure high-quality indexing over document collections used by the retriever part since poor recall directly impacts downstream generations negatively. - Regularly update underlying corpora so they remain current; stale resources may propagate outdated information through synthetic texts produced thereafter. - Monitor closely any changes made either upstream (e.g., modifications affecting source material accessibility) or inside your own infrastructure because alterations elsewhere often necessitate corresponding adjustments locally too. By following these recommendations alongside leveraging state-of-the-art techniques provided via frameworks like those mentioned earlier, developers stand well positioned to build robust conversational agents capable of delivering accurate answers across diverse domains requiring specialized domain expertise beyond what general-purpose pretrained models alone offer today. --related questions-- 1. How does multi-task learning compare against single-task approaches concerning adaptability? 2. What are some challenges faced when implementing keyword-based point cloud completion algorithms? 3. Can prompt engineering significantly influence outcomes in few-shot learning settings? 4. Are there specific industries benefiting most prominently from advancements in knowledge-intensive NLP technologies?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值