EFUF: Efficient Fine-grained Unlearning Framework for Mitigating Hallucinations in Multimodal LLMs

828 篇文章

已下架不支持订阅

本文介绍了一种名为EFUF的高效细粒度遗忘框架,旨在解决多模态大型语言模型(MLLMs)中的对象幻觉问题。现有方法依赖于昂贵的人工注释和大量计算资源,而EFUF则无需配对数据,通过文本图像相似性和遗忘策略减少幻觉,同时保持模型生成质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《EFUF: Efficient Fine-grained Unlearning Framework for Mitigating
Hallucinations in Multimodal Large Language Models》的翻译。

EFUF:一种有效的细粒度遗忘学习框架,用于缓解多模态大型语言模型中的幻觉

摘要

在过去的几年里,多模态大型语言模型(MLLMs)引起了越来越多的关注,但它们仍然可能生成包括相应图像中不存在的对象的描述,这种现象被称为对象幻觉。为了消除幻觉,现有的方法手动注释有幻觉和没有幻觉的配对响应,然后使用各种对齐算法来提高图像和文本之间的对齐能力。然而,它们不仅在微调阶段需要大量的计算资源,而且还需要昂贵的人工注释来构建对齐算法所需的配对数据。为了解决这些问题,我们借用了遗忘的思想,提出了一种高效的细粒度遗忘框架(EFUF),它可以消除幻觉,而不需要配对数据。大量实验表明,我们的方法在保持生成质量的同时,持续减少了幻觉,计算开销适中。我们的代码和数据集将公开。

1 引言

2 相关工作

3 初步实验

4 多模态幻觉缓解

5 实验

<

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值