Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation

828 篇文章

已下架不支持订阅

大型语言模型在处理资源稀缺语言时表现不佳。本文提出SDRRL方法,利用资源丰富语言的自蒸馏来增强多语言性能,实验证明该方法有效且对源语言性能影响小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages》的翻译。

从资源丰富的语言中自我蒸馏提高大型语言模型的多语言能力

摘要

尽管大型语言模型(LLM)已经在多语言语料库上进行了预训练,但与少数资源丰富的语言相比,它们在大多数语言中的性能仍然落后。缓解这一问题的一种常见方法是将训练数据从资源丰富的语言翻译成其他语言,然后继续训练。然而,使用仅依赖翻译而忽略LLM跨语言的原始能力的数据并不总是有效的,我们表明这将限制跨语言知识转移的性能。在这项工作中,我们提出了SDRRL,这是一种基于资源丰富语言的自蒸馏的方法,通过利用LLM在资源丰富语言上的内部能力,有效地提高了多语言性能。我们在各种理解和生成任务中对不同的LLM(LLaMA-2和SeaLLM)和源语言(英语和法语)进行了评估,实验结果表明,SDRRL可以显著增强多语言能力,同时最大限度地减少资源丰富语言对原始性能的影响。

1 引言

2 相关工作

3 方法

4 实验

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值