Are Large Language Models Rational Investors?

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)在财务分析中的应用,引入了财务偏见指标(FBI)来评估其金融合理性。研究发现,LLM在理解和解释市场数据时可能存在内在偏见和对复杂性的浅显理解。通过分析19个LLM,研究表明模型设计、训练和输入策略影响其财务合理性,而专门训练的金融模型可能更具非理性。该研究为提升LLM在金融分析中的可靠性和理性提供了方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Are Large Language Models Rational Investors?》的翻译。

摘要

大型语言模型(LLM)正逐渐被用于财务分析,以利用其广泛的知识库来解释复杂的市场数据和趋势。然而,它们在金融领域的应用受到内在偏见(即风险偏好偏见)和对市场复杂性的肤浅理解的挑战,这突出了对其金融洞察力进行彻底评估的必要性。这项研究引入了一个新的框架,即财务偏见指标(FBI),以批判性地评估LLM的财务合理性,重点是它们辨别和驾驭财务信息微妙之处的能力,以及识别任何可能扭曲市场分析的非理性偏见的能力。
我们的研究采用了一种创新的方法来衡量财务合理性,结合行为金融学的原理来审视LLM的偏见和决策模式。我们对19个领先的LLM进行了全面评估,考虑了模型规模、训练数据集、输入策略等因素。研究结果表明,受模型设计和训练的影响,模型之间存在不同程度的财务不合理性。专门在金融数据集上训练的模型可能表现出更大的非理性,甚至更大的金融语言模型(FinLLM)也可能比更小、更通用的模型表现出更多的偏见。这一结果为这些因素如何影响LLM的财务合理性提供了深刻的见解,表明有针对性的训练和结构化的输入方法可以提高模型性能。这项工作丰富了我们对LLM在金融应用中的优势和劣势的理解,为开发更可靠、更合理的金融分析工具奠定了基础。

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值