本文是LLM系列文章,针对《Are Large Language Models Rational Investors?》的翻译。
摘要
大型语言模型(LLM)正逐渐被用于财务分析,以利用其广泛的知识库来解释复杂的市场数据和趋势。然而,它们在金融领域的应用受到内在偏见(即风险偏好偏见)和对市场复杂性的肤浅理解的挑战,这突出了对其金融洞察力进行彻底评估的必要性。这项研究引入了一个新的框架,即财务偏见指标(FBI),以批判性地评估LLM的财务合理性,重点是它们辨别和驾驭财务信息微妙之处的能力,以及识别任何可能扭曲市场分析的非理性偏见的能力。
我们的研究采用了一种创新的方法来衡量财务合理性,结合行为金融学的原理来审视LLM的偏见和决策模式。我们对19个领先的LLM进行了全面评估,考虑了模型规模、训练数据集、输入策略等因素。研究结果表明,受模型设计和训练的影响,模型之间存在不同程度的财务不合理性。专门在金融数据集上训练的模型可能表现出更大的非理性,甚至更大的金融语言模型(FinLLM)也可能比更小、更通用的模型表现出更多的偏见。这一结果为这些因素如何影响LLM的财务合理性提供了深刻的见解,表明有针对性的训练和结构化的输入方法可以提高模型性能。这项工作丰富了我们对LLM在金融应用中的优势和劣势的理解,为开发更可靠、更合理的金融分析工具奠定了基础。