Stealthy Attack on Large Language Model based Recommendation

本文探讨大型语言模型(LLM)在推荐系统中的安全问题。研究发现,攻击者可仅通过改变项目文本内容,不干扰模型训练,显著提升项目曝光率,且这种攻击难以检测。实验验证了其在多个LLM推荐模型中的有效性和隐蔽性,揭示了系统漏洞,呼吁加强安全措施。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Stealthy Attack on Large Language Model based Recommendation》的翻译。

基于推荐的大型语言模型的隐秘攻击

摘要

最近,强大的大型语言模型(LLM)在推动推荐系统(RS)的发展方面发挥了重要作用。然而,尽管这些系统蓬勃发展,但它们对安全威胁的易感性在很大程度上被忽视了。在这项工作中,我们揭示了将LLM引入推荐模型会带来新的安全漏洞,因为它们强调项目的文本内容。我们证明,攻击者只需在测试阶段更改项目的文本内容,就可以显著提高项目的曝光率,而不需要直接干扰模型的训练过程。此外,这种攻击非常隐蔽,因为它不会影响整体推荐性能,而且对文本的修改很微妙,用户和平台很难检测到。我们在四个主流的基于LLM的推荐模型上进行的综合实验证明了我们的方法的优越性和隐蔽性。我们的工作揭示了基于LLM的推荐系统中存在的重大安全漏洞,并为未来保护这些系统的研究铺平了道路。

1 引言

2 方法

3 实验

4 相关工作

5 结论

总之,我们的调查暴露了基于LLM的推荐系统中的一个关键安全问题,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值