本文是LLM系列文章,针对《Stealthy Attack on Large Language Model based Recommendation》的翻译。
摘要
最近,强大的大型语言模型(LLM)在推动推荐系统(RS)的发展方面发挥了重要作用。然而,尽管这些系统蓬勃发展,但它们对安全威胁的易感性在很大程度上被忽视了。在这项工作中,我们揭示了将LLM引入推荐模型会带来新的安全漏洞,因为它们强调项目的文本内容。我们证明,攻击者只需在测试阶段更改项目的文本内容,就可以显著提高项目的曝光率,而不需要直接干扰模型的训练过程。此外,这种攻击非常隐蔽,因为它不会影响整体推荐性能,而且对文本的修改很微妙,用户和平台很难检测到。我们在四个主流的基于LLM的推荐模型上进行的综合实验证明了我们的方法的优越性和隐蔽性。我们的工作揭示了基于LLM的推荐系统中存在的重大安全漏洞,并为未来保护这些系统的研究铺平了道路。
1 引言
2 方法
3 实验
4 相关工作
5 结论
总之,我们的调查暴露了基于LLM的推荐系统中的一个关键安全问题,