本文是LLM系列文章,针对《CHATATC: Large Language Model-Driven Conversational Agents for Supporting Strategic Air Traffic Flow Management》的翻译。
摘要
通过ChatGPT等公开工具,生成人工智能(AI)和大型语言模型(LLM)迅速流行起来。人类用户与ChatGPT等计算机应用程序之间的自然互动,以及强大的摘要和文本生成功能,推动了LLM在个人和专业用途中的应用。鉴于这种生成人工智能工具的广泛使用,在这项工作中,我们研究了如何在非安全关键的战略性交通流管理环境中部署这些工具。具体而言,我们根据2000年至2023年期间地面延迟计划(GDP)发布的大量历史数据集,训练LLM CHATATC,该数据集包括80000多个GDP实施、修订和取消。我们测试了CHATATC的查询和响应能力,记录了成功(例如,提供正确的GDP率、持续时间和原因)和缺点(例如,最高级问题)。我们还详细介绍了图形用户界面的设计,供未来用户与CHATATC会话代理进行交互和协作。