Towards Generalist Prompting for Large Language Models by Mental Models

本文探讨了大型语言模型(LLM)如何通过心理模型提示(MeMo)实现通用性能,旨在减少对特定任务提示的依赖。MeMo提供了一种简单设计,能在零样本环境下,在STEM、逻辑和常识推理等任务中达到先进水平,促进LLM通用提示的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Towards Generalist Prompting for Large Language Models by Mental Models》的翻译。

心理模型对大型语言模型的泛化提示

摘要

大型语言模型(LLM)在许多任务上都表现出了令人印象深刻的性能。然而,为了实现最佳性能,仍然需要专门设计的提示方法。这些方法要么依赖于需要一定水平的领域知识的特定任务的小样本示例,要么设计得很简单,但只在少数类型的任务中表现良好。在这项工作中,我们试图引入通才提示的概念,它的设计原则是在广泛的任务中实现最佳或接近最佳的性能,同时消除了手动选择和定制针对特定问题的提示的需要。此外,我们提出了MeMo(心理模型),这是一种创新的提示方法,设计简单,但有效地满足了广义提示的标准。MeMo将各种提示方法的核心提取到单个心理模型中,并允许LLM自主选择最适合问题的心理模型,在零样本环境中实现或接近STEM、逻辑推理和常识推理等不同任务的最先进结果。我们希望本文提出的见解将促进对LLM的多面手提示方法的进一步探索。

1 引言

2 心理模型提示

3 实验

4 相关工作

5 结论

### DeepSeekMoE 中实现终极专家专业化的方法 #### 动态专业化路由 (Dynamic Specialization Routing) DeepSeek MoE 架构通过引入动态专业化路由(DSR),解决了传统Mixture-of-Experts(MoE)模型中存在的“伪专家”问题。相比于传统的基于门控机制来选择固定数量的活跃专家,DSR允许更灵活地分配计算资源给最合适的专家[^1]。 ```python def dynamic_specialization_routing(input_tensor, experts): # 计算输入张量与各专家之间的匹配度得分 scores = compute_scores(input_tensor, experts) # 根据得分挑选最适合处理当前任务的一个或多个专家 selected_expert_indices = select_best_experts(scores) return apply_selected_experts(selected_expert_indices, input_tensor) ``` #### 细粒度专家分割 为了进一步提高效率和效果,在构建专家网络时采用了细粒度的专家分割技术。这意味着每个子领域内的专业知识可以被更加精确地建模,从而使得每一个专家都能够专注于特定的任务特性而不是泛化整个数据集上的表现[^2]。 #### 共享专家隔离 除了上述两点外,还提出了共享专家隔离的概念。这不仅减少了冗余参数的数量,而且促进了不同模块间更好的协作关系。具体来说就是对于那些具有相似功能需求的部分采用相同的底层组件作为基础支持,而这些共同使用的部分则会被独立出来形成所谓的“共享层”。 这种设计既保持了各个分支之间必要的差异性又实现了整体结构上的一致性和简洁性,最终达到了更高的性能指标以及更低的成本开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值