本文是LLM系列文章,针对《OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-answering with open-source large language models》的翻译。
摘要
背景:LLM越来越有能力完成一系列专业任务,并可用于扩大公平获得医学知识的机会。大多数医学LLM都涉及广泛的微调,利用专门的医学数据和大量的计算能力,因此成本高昂。许多表现最好的LLM都是专有的,其访问权限仅限于极少数研究小组。然而,开源(OS)模型代表了医疗LLM的一个关键增长领域,因为其性能显著提高,并且具有提供医疗保健所需透明度和合规性的内在能力。在这里,我们介绍了OpenMedLM,这是一个提示平台,可在医疗基准上为操作系统LLM提供最先进的(SOTA)性能。
方法:我们在四个医学基准(MedQA、MedMCQA、PubMedQA、MMLU医学子集)上评估了一系列OS基础LLM(7B-70B)。Yi 34B在基线时表现最好,因此被用于开发OpenMedLM。我们采用了一系列提示策略,包括零样本、少搜索、思维链(随机选择和kNN选择)和集合/自主投