OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-answering

研究表明,通过提示工程,开源(OS)大型语言模型(LLM)OpenMedLM在多个医学问答基准上超越了微调模型,实现了最先进的性能。OpenMedLM在无需专门微调的情况下,于MedQA和MMLU医学子集上展现出优秀的准确率,降低了对昂贵计算资源的需求,为医疗AI的发展开辟新路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-answering with open-source large language models》的翻译。

OpenMedLM:Prompt engineering可以在使用开源大型语言模型的医学问答中进行微调

摘要

背景:LLM越来越有能力完成一系列专业任务,并可用于扩大公平获得医学知识的机会。大多数医学LLM都涉及广泛的微调,利用专门的医学数据和大量的计算能力,因此成本高昂。许多表现最好的LLM都是专有的,其访问权限仅限于极少数研究小组。然而,开源(OS)模型代表了医疗LLM的一个关键增长领域,因为其性能显著提高,并且具有提供医疗保健所需透明度和合规性的内在能力。在这里,我们介绍了OpenMedLM,这是一个提示平台,可在医疗基准上为操作系统LLM提供最先进的(SOTA)性能。
方法:我们在四个医学基准(MedQA、MedMCQA、PubMedQA、MMLU医学子集)上评估了一系列OS基础LLM(7B-70B)。Yi 34B在基线时表现最好,因此被用于开发OpenMedLM。我们采用了一系列提示策略,包括零样本、少搜索、思维链(随机选择和kNN选择)和集合/自主投

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值