Large Language Models are Few-shot Generators: Proposing Hybrid Prompt Algorithm

本文提出了一种混合提示算法,利用大型语言模型(如GPT-3.5、GPT-4、code-llama-34B)生成webshell转义样本,解决缺乏复杂恶意特征数据集的问题。实验显示,该算法能有效提高webshell的逃逸率和存活率,同时具有良好的可扩展性和泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models are Few-shot Generators: Proposing Hybrid Prompt Algorithm To Generate Webshell Escape Samples》的翻译。

大型语言模型是小样本生成器:提出混合提示算法生成Webshell Escape样本

摘要

网络攻击的频繁发生,使得webshell攻击与防御逐渐成为网络安全领域的研究热点。然而,由于缺乏公开的基准数据集,以及过度依赖手动定义的webshell转义样本生成规则,导致webshell转义采样生成策略和基于人工智能的webshell检测算法的研究进展缓慢。为了解决webshell样本转义能力较弱、缺乏具有复杂恶意特征的webshell数据集的缺点,并促进webshell检测技术的发展,我们提出了借助大型语言模型生成webshell转义样本的混合提示算法。混合提示算法是专门为webshell样本生成而开发的一种提示算法,它不仅结合了思想链、思想树等多种提示思想,还结合了webshell层次模块、小样本示例等多种组件,便于LLM学习和推理webshell逃生策略。实验结果表明,混合提示算法可以与多个具有良好代码推理能力的LLM协同工作,生成高质量的webshell样本,其逃逸率(在VIRUSTOTAL检测引擎上使用GPT-4模型时为88.61%)和存活率(GPT-4模型时为54.98%)都很高。

1 引言</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值