本文是LLM系列文章,针对《Large Language Models are Few-shot Generators: Proposing Hybrid Prompt Algorithm To Generate Webshell Escape Samples》的翻译。
摘要
网络攻击的频繁发生,使得webshell攻击与防御逐渐成为网络安全领域的研究热点。然而,由于缺乏公开的基准数据集,以及过度依赖手动定义的webshell转义样本生成规则,导致webshell转义采样生成策略和基于人工智能的webshell检测算法的研究进展缓慢。为了解决webshell样本转义能力较弱、缺乏具有复杂恶意特征的webshell数据集的缺点,并促进webshell检测技术的发展,我们提出了借助大型语言模型生成webshell转义样本的混合提示算法。混合提示算法是专门为webshell样本生成而开发的一种提示算法,它不仅结合了思想链、思想树等多种提示思想,还结合了webshell层次模块、小样本示例等多种组件,便于LLM学习和推理webshell逃生策略。实验结果表明,混合提示算法可以与多个具有良好代码推理能力的LLM协同工作,生成高质量的webshell样本,其逃逸率(在VIRUSTOTAL检测引擎上使用GPT-4模型时为88.61%)和存活率(GPT-4模型时为54.98%)都很高。