本文是LLM系列文章,针对《Gecko: Versatile Text Embeddings Distilled from Large Language Models》的翻译。
摘要
我们介绍了Gecko,一个紧凑而通用的文本嵌入模型。Gecko通过利用一个关键思想实现了强大的检索性能:将大型语言模型(LLM)中的知识蒸馏到检索器中。我们的两步蒸馏过程从使用LLM生成不同的合成配对数据开始。接下来,我们通过为每个查询检索一组候选段落,并使用相同的LLM重新标记正面和反面段落,来进一步改进数据质量。Gecko的紧凑性证明了我们方法的有效性。在海量文本嵌入基准测试(MTEB)上,具有256个嵌入维度的Gecko优于具有768个嵌入大小的所有现有条目。具有768个嵌入维度的Gecko平均得分为66.31,与7倍大的模型和5倍高维度的嵌入竞争。
1 引言
2 相关工作
3 Gecko的训练脚本
4 实验
5 结论
在本文中,我们介绍了Gecko,这是一种从大型语言模型中蒸馏出来的通用文本嵌入模型。Gecko是在LLM生成的合成数据集FRet上训练的,该数据集包含LLM排序的正