Harnessing Multi-Role Capabilities of Large Language Models for Open-Domain Question Answering

本文提出LLMQA框架,整合大型语言模型(LLM)在开放域问答(ODQA)中的生成、排序和评估能力,用于查询扩展、文档选择和答案生成。通过新提示优化算法提升证据质量和答案准确性,在多个基准测试上表现最佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Harnessing Multi-Role Capabilities of Large Language Models for
Open Domain Question Answering》的翻译。

利用大型语言模型的多角色能力进行开放领域问答

摘要

开放域问答(ODQA)已成为信息系统研究的一个重要热点。现有的证据收集方法主要有两种范式:(1)先检索后阅读范式从外部语料库中检索相关文档;以及(2)先生成后读取范式使用大型语言模型(LLM)来生成相关文档。然而,两者都不能完全满足对证据的多方面要求。为此,我们提出了LLMQA,这是一个通用的框架,将ODQA过程公式化为三个基本步骤:查询扩展、文档选择和答案生成,结合了基于检索和基于生成的证据的优势。由于LLM表现出出色的能力来完成各种任务,我们指示LLM在我们的框架内扮演生成器、重新排序器和评估器的多重角色,将它们集成在ODQA过程中进行协作。此外,我们引入了一种新的提示优化算法来细化角色扮演提示,并引导LLM生成更高质量的证据和答案。在广泛使用的基准测试(NQ、WebQ和TriviaQA)上的大量实验结果表明,LLMQA在回答准确性和证据质量方面都取得了最佳性能,展示了其推进ODQA研究和应用的潜力。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值