本文是LLM系列文章,针对《Harnessing Multi-Role Capabilities of Large Language Models for
Open Domain Question Answering》的翻译。
摘要
开放域问答(ODQA)已成为信息系统研究的一个重要热点。现有的证据收集方法主要有两种范式:(1)先检索后阅读范式从外部语料库中检索相关文档;以及(2)先生成后读取范式使用大型语言模型(LLM)来生成相关文档。然而,两者都不能完全满足对证据的多方面要求。为此,我们提出了LLMQA,这是一个通用的框架,将ODQA过程公式化为三个基本步骤:查询扩展、文档选择和答案生成,结合了基于检索和基于生成的证据的优势。由于LLM表现出出色的能力来完成各种任务,我们指示LLM在我们的框架内扮演生成器、重新排序器和评估器的多重角色,将它们集成在ODQA过程中进行协作。此外,我们引入了一种新的提示优化算法来细化角色扮演提示,并引导LLM生成更高质量的证据和答案。在广泛使用的基准测试(NQ、WebQ和TriviaQA)上的大量实验结果表明,LLMQA在回答准确性和证据质量方面都取得了最佳性能,展示了其推进ODQA研究和应用的潜力。