Derivative-Free Optimization for Low-Rank Adaptation in Large Language Models

本文提出了一种无导数优化方法,用于在大型语言模型中适应低秩模块,减少计算资源需求。通过在每个自注意力层引入低秩模块并交替优化,实验显示该方法在内存使用、收敛速度和性能上优于基于梯度的参数调整,尤其在小样本设置下表现突出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Derivative-Free Optimization for Low-Rank Adaptation in Large Language Models》的翻译。

大型语言模型低阶自适应的无导数优化

摘要

诸如LoRA之类的参数有效调整方法可以通过调整一小部分参数来实现与模型调整相当的性能。然而,仍然需要大量的计算资源,因为这个过程涉及计算梯度和在整个模型中执行反向传播。最近,人们致力于利用无导数优化方法来避免梯度的计算,并在小样本设置中展示增强的鲁棒性。在本文中,我们将低阶模块预先设置到模型的每个自注意层中,并使用两种无导数优化方法在每一层交替优化这些低阶模块。在各种任务和语言模型上的广泛结果表明,与现有的基于梯度的参数有效调整和无导数优化方法相比,我们提出的方法在内存使用和收敛速度方面取得了显著的改进,并表现出明显的优势。

1 引言

2 前言

3 方法

4 实验

5 分析

6 相关工作

7 结论

在这项工作中,我们介绍了一种新的方法,以无导数的方式优化大型语言模型中的低阶模块。该方法包括将低秩模块集成到模型的每

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值