Mixture-of-LoRAs: An Efficient Multitask Tuning for Large Language Models

本文提出了一种名为Mixture-of-LoRAs的架构,用于大型语言模型的高效多任务微调。通过单独训练领域特定的LoRA模块,结合显式路由策略,防止遗忘和任务干扰,提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Mixture-of-LoRAs: An Efficient Multitask Tuning for Large Language Models》的翻译。

LoRA的混合:一种适用于大型语言模型的高效多任务调优

摘要

指令调优有可能激发或增强大型语言模型(LLM)的特定功能。然而,实现正确的数据平衡对于防止灾难性的遗忘和任务之间的干扰至关重要。为了解决这些局限性并增强训练灵活性,我们提出了LoRA的混合(MoA)架构——一种新颖且参数有效的调整方法,用于LLM的多任务学习。在本文中,我们首先使用相应的监督语料库数据单独训练多个领域特定的LoRA模块。这些LoRA模块可以和专家混合(MoE)中的专家设计原则相一致。随后,我们使用显式路由策略将LORA组合起来,并引入域标签来促进多任务学习,这有助于防止任务之间的干扰,并最终提高每个单独任务的性能。此外,每个LoRA模型都可以迭代地适应新的领域,从而实现快速的领域特定适应。在不同任务上的实验证明了我们的方法优越而稳健的性能,这也将进一步促进特定领域LLM的应用。

1 引言

2 相关工作

3 方法

4 实验

5 结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值