CLongEval: A Chinese Benchmark for Evaluating Long-Context Large Language Models

本文是LLM系列文章,针对《CLongEval: A Chinese Benchmark for Evaluating Long-Context Large Language Models》的翻译。

CLongEval:一个评估长上下文大语言模型的中文基准

摘要

开发具有强大长上下文能力的大型语言模型(LLM)是近年来的研究热点,导致了精通汉语的长上下文LLM的出现。然而,由于缺乏基准,对这些模型的评估仍不完善。为了解决这一差距,我们提出了CLongEval,这是一个评估长上下文LLM的综合中文基准。CLongEval的特点有三个:(1)数据量充足,包括7个不同的任务和7267个例子;(2) 广泛的适用性,适用于上下文窗口大小从1K到100K的模型;(3) 高质量,除了自动构建的标签外,还有2000多个手动注释的问答对。通过CLongEval,我们对6个开源长上下文LLM和2个领先的商业同行进行了全面评估,这些LLM既具有长上下文能力,又精通中文。我们还根据实证结果进行了深入分析,试图阐明在长期环境中提出挑战的关键能力。

1 引言

2 CLongEval中的评估框架

3 CLongEval

HPO-B是一个基于OpenML的大规模可复现的黑盒超参数优化(HPO)基准。超参数优化是机器学习中非常重要的一环,它涉及在给定的模型框架下选择最优的超参数配置,以提高模型的性能和泛化能力。 HPO-B基准的目的是为了提供一个可靠且可复现的平台,用于评估不同HPO方法的效果。通过使用OpenML作为基础数据集和算法库,HPO-B能够提供广泛的机器学习任务和模型,从而覆盖不同领域的实际应用。 HPO-B基准的黑盒性质意味着它仅仅观察模型的输入和输出,而不考虑模型内部的具体实现。这种设置模拟了现实世界中许多机器学习任务的情况,因为在实际应用中,我们通常无法获得关于模型的全部信息。 HPO-B基准旨在解决现有HPO方法的一些挑战,例如难以比较和复制不同方法之间的实验结果。它通过提供标准任务、固定的训练-验证-测试数据分割方式和一致的评估协议,使得不同方法之间的比较更加公平和可靠。 通过使用HPO-B基准,研究人员和从业者可以在统一的实验环境中进行黑盒超参数优化方法的评估和对比。这有助于推动该领域的发展,促进更好的超参数优化算法的提出和运用。 总而言之,HPO-B是一个基于OpenML的大规模可复现的黑盒超参数优化基准,旨在解决现有方法比较困难和结果复现性差的问题,并推动超参数优化算法的发展。它为机器学习任务提供了一个统一的实验平台,以评估不同方法在不同领域的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值