Evolving Knowledge Distillation with Large Language Models and Active Learning

本文提出EvoKD,一种结合大型语言模型(LLM)和主动学习的知识蒸馏方法,用于提升小模型在NLP任务上的性能。通过分析学生模型的弱点并生成相关样本,EvoKD在文本分类和命名实体识别任务中展现出有效性,即使在小样本情况下也能达到接近全样本性能的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Evolving Knowledge Distillation with Large Language Models and
Active Learning》的翻译。

大语言模型下的进化知识蒸馏与主动学习

摘要

大型语言模型(LLM)已经在各种NLP任务中展示了非凡的能力。然而,它们的计算成本高得令人望而却步。为了解决这个问题,先前的研究试图通过生成注释数据将LLM的知识蒸馏到更小的模型中。尽管如此,这些工作主要集中在LLM用于文本生成和标记的直接使用上,而没有充分探索其理解目标任务和获取有价值知识的潜力。在本文中,我们提出了EvoKD:进化知识蒸馏,它利用主动学习的概念来交互式地增强使用大型语言模型的数据生成过程,同时提高小域模型(学生模型)的任务能力。与以往的工作不同,我们积极分析学生模型的弱点,然后在分析的基础上合成标记样本。此外,我们还向LLM提供关于学生模型性能的迭代反馈,以持续构建多样化和具有挑战性的样本。对不同的NLP任务,即文本分类和命名实体识别的实验和分析表明了EvoKD的有效性。

1 引言

2 相关工作

3 EvoKD

4 实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值