Dial-insight: Fine-tuning LLMs with High-Quality Domain-Specific Data Preventing Capability Collapse

本文介绍了一种两阶段方法来生成高质量的领域特定数据,以微调大型语言模型(LLMs),防止模型泛化能力下降。研究表明,这种方法能增强LLM的领域专长,同时保持其通用能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Dial-insight: Fine-tuning Large Language Models with High-Quality
Domain

Dial insight:使用高质量的特定领域数据微调大型语言模型,防止能力崩溃

摘要

大型语言模型(LLM)的有效性在很大程度上取决于基础数据的质量,尤其是在专业领域内。为特定领域的应用程序微调LLM时,一个常见的挑战是模型泛化能力的潜在退化。为了解决这些问题,我们提出了一种分两阶段构建生产提示的方法,旨在生成高质量的数据。这种方法包括生成一系列不同的提示,这些提示涵盖了广泛的任务,并表现出丰富多样的表达方式。此外,我们引入了一个具有成本效益的多维质量评估框架,以确保生成的标签数据的完整性。利用由房地产行业的服务提供商和客户互动组成的数据集,我们证明了数据质量和模型性能之间的正相关性。值得注意的是,我们的研究结果表明,通过对我们提出的方法产生的数据进行微调,可以提高通用LLM的领域特异性熟练度,而不会损害其整体泛化能力,即使只使用领域特异性数据进行微调。

1 引言

2 两阶段进化提示数据生成方法

3 实验和分析

4 结论

本文提出了一种高质量的领域数据构建生成方法,主要包括两阶段快速进化方法和基于大模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值