本文是LLM系列文章,针对《Dial-insight: Fine-tuning Large Language Models with High-Quality
Domain
Dial insight:使用高质量的特定领域数据微调大型语言模型,防止能力崩溃
摘要
大型语言模型(LLM)的有效性在很大程度上取决于基础数据的质量,尤其是在专业领域内。为特定领域的应用程序微调LLM时,一个常见的挑战是模型泛化能力的潜在退化。为了解决这些问题,我们提出了一种分两阶段构建生产提示的方法,旨在生成高质量的数据。这种方法包括生成一系列不同的提示,这些提示涵盖了广泛的任务,并表现出丰富多样的表达方式。此外,我们引入了一个具有成本效益的多维质量评估框架,以确保生成的标签数据的完整性。利用由房地产行业的服务提供商和客户互动组成的数据集,我们证明了数据质量和模型性能之间的正相关性。值得注意的是,我们的研究结果表明,通过对我们提出的方法产生的数据进行微调,可以提高通用LLM的领域特异性熟练度,而不会损害其整体泛化能力,即使只使用领域特异性数据进行微调。
1 引言
2 两阶段进化提示数据生成方法
3 实验和分析
4 结论
本文提出了一种高质量的领域数据构建生成方法,主要包括两阶段快速进化方法和基于大模型