A Question on the Explainability of Large Language Models and the Word-Level Univariate First-Order

本文探讨大型语言模型(LLM)的解释敏感性,提出特征分析表明简单模型的解释可能比transformer模型更具统计信号且噪声更小。通过信号、噪声和信噪比的定义,作者揭示了对LLM解释性的质疑,并指出提高可解释性可能需要考虑更复杂的解释方法,如单词的多元组和注意力值。研究结果暗示准确性和可解释性之间的权衡,呼吁对更高阶统计和人类理解的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《A Question on the Explainability of Large Language Models
and the Word Level Univariate First Order Plausibility Assumption》的翻译。

大语言模型的可解释性问题及单词级单变量一阶可解释性假设

摘要

最近,大型语言模型的解释被证明对其训练中使用的随机性很敏感,这就需要描述这种敏感性。在本文中,我们提出了一个特征,质疑为此类模型提供简单和信息性解释的可能性。为此,我们给出了解释的信号、噪声和信噪比的统计定义。我们强调,在一个典型的案例研究中,使用一阶统计工具分析单词水平的单变量解释,简单的基于特征的模型的解释比transformer模型的解释携带更多的信号和更少的噪声。然后,我们讨论了用信号和噪声的替代定义来改进这些结果的可能性,这些定义将捕捉更复杂的解释和分析方法,同时也质疑读者对其合理性的权衡。

引言

背景

实验设置

实验结果

结论

我们的结果强调,如果仅限于简单的解释,与基于Transformer的模型(如CamemBERT)相比,简单的模型可能携带更多的统计信号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值