本文是LLM系列文章,针对《A Question on the Explainability of Large Language Models
and the Word Level Univariate First Order Plausibility Assumption》的翻译。
摘要
最近,大型语言模型的解释被证明对其训练中使用的随机性很敏感,这就需要描述这种敏感性。在本文中,我们提出了一个特征,质疑为此类模型提供简单和信息性解释的可能性。为此,我们给出了解释的信号、噪声和信噪比的统计定义。我们强调,在一个典型的案例研究中,使用一阶统计工具分析单词水平的单变量解释,简单的基于特征的模型的解释比transformer模型的解释携带更多的信号和更少的噪声。然后,我们讨论了用信号和噪声的替代定义来改进这些结果的可能性,这些定义将捕捉更复杂的解释和分析方法,同时也质疑读者对其合理性的权衡。
引言
背景
实验设置
实验结果
结论
我们的结果强调,如果仅限于简单的解释,与基于Transformer的模型(如CamemBERT)相比,简单的模型可能携带更多的统计信号