TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale

TriSum框架将大型语言模型(LLM)的文本摘要能力转移到紧凑的局部模型,通过LLM提取理由三元组和摘要,使用双重打分方法优化,然后训练小型模型。这种方法在CNN/DaylyMail、XSum和ClinicalTrial基准上提高了局部模型的性能,同时提供了更好的可解释性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale》的翻译。

TriSum:从具有结构化原理的大型语言模型中学习总结能力

摘要

大型语言模型(LLM)的出现大大推进了文本摘要等自然语言处理任务。然而,它们的大尺寸和计算需求,加上数据传输中的隐私问题,限制了它们在资源受限和以隐私为中心的环境中的使用。为了克服这一点,我们引入了TriSum,这是一个将LLM的文本摘要能力蒸馏到紧凑的局部模型中的框架。最初,LLM提取了一组方面三重的理由和摘要,并使用双重打分方法对其进行了改进。接下来,用这些任务训练一个较小的局部模型,采用从简单任务发展到复杂任务的课程学习策略。我们的方法在各种基准测试(CNN/DaylyMail、XSum和ClinicalTrial)上增强了局部模型的性能,分别比基线高4.5%、8.5%和7.4%。它还通过提供对摘要原理的深入了解来提高可解释性。

1 引言

2 相关工作

3 方法

4 实验

5 结论

我们介绍了TriSum,这是一种旨在将摘要功能从大型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值