ProgGen: Generating Named Entity Recognition Datasets Step by step with Self Reflexive LLMs

本文介绍了一种创新方法ProgGen,利用大型语言模型(LLM)生成命名实体识别(NER)数据集。通过LLM的自我反思,创建属性丰富的训练数据,解决传统NER任务中的挑战。实验表明,这种方法在性能和成本上优于传统数据生成,且揭示了实体多样性和注释准确性的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《ProgGen: Generating Named Entity Recognition Datasets Step by step with Self Reflexive Large Language Models》的翻译。

ProgGen:使用自反射大型语言模型逐步生成命名实体识别数据集

摘要

尽管大型语言模型(LLM)在各个领域表现出显著的适应性,但这些模型在命名实体识别(NER)等结构化知识提取任务中往往达不到要求。本文探索了一种创新的、具有成本效益的策略,以利用具有适度NER能力的LLM来生成卓越的NER数据集。我们的方法与基本类条件提示不同,它指示LLM对特定领域进行自我反思,从而生成与领域相关的属性(如电影评论的类别和情绪),用于创建属性丰富的训练数据。此外,我们先发制人地生成实体术语,然后围绕这些实体开发NER上下文数据,有效地绕过了LLM复杂结构的挑战。我们在通用和市场定位领域的实验表明,与传统的数据生成方法相比,性能显著增强,同时比现有的替代方法更具成本效益。

1 引言

2 相关工作

3 方法

4 实验

5 结论

我们介绍了ProgGen,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值