Let’s Focus on Neuron: Neuron-Level Supervised Fine-tuning for Large Language Model

本文提出了一种名为NeFT的新方法,针对大型语言模型进行神经元级微调,以提高计算效率和性能。与全参数微调和层级微调相比,NeFT通过对单个神经元的精细化调整,实现了更精确的模型更新。实验结果显示,NeFT在多项任务中表现出色,同时提供了对模型内部神经元功能的洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Let’s Focus on Neuron: Neuron-Level Supervised Fine-tuning for Large Language Model》的翻译。

让我们关注神经元:大型语言模型的神经元级监督微调

摘要

大型语言模型(LLM)由表现出各种行为和角色的神经元组成,随着模型的扩展,这些行为和角色变得越来越多样化。最近的研究表明,并非所有神经元在不同的数据集中都是活跃的,这种稀疏性与特定任务的能力呈正相关,从而提高了模型修剪和训练效率。传统的微调方法涉及LLM的所有参数,这在计算上是昂贵的,并且可能不是必要的。相反,参数有效微调(PEFT)方法旨在最大限度地减少可训练参数的数量,但它们仍然在相对宏观的尺度上运行(例如,层级别)。我们引入了神经元级微调(NeFT),这是一种新的方法,可以将参数训练的粒度细化到单个神经元,从而实现更精确和计算高效的模型更新。实验结果表明,NeFT不仅超过了全参数微调和PEFT的性能,而且为神经元的分析提供了见解。

1 引言

2 背景

3 前言实验

4 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值