Teacher-Student Training for Debiasing: General Permutation Debiasing for Large Language Models

本文是LLM系列文章,针对《Teacher-Student Training for Debiasing: General Permutation Debiasing for Large Language Models》的翻译。

摘要

大型语言模型(LLM)在NLP任务中展示了令人印象深刻的零样本能力和多功能性,但它们有时无法为特定任务保持关键的不变性。一个例子是排列灵敏度,其中LLM的输出可能根据输入选项的顺序而显著变化。虽然去偏技术可以缓解这些问题,并产生更好的性能和可靠性,但它们在推理时往往会带来高昂的计算成本。本文解决了这种推理时的低效问题。其目的是将计算密集型、去偏的教师模型的能力提取为更紧凑的学生模型。我们探索了学生模型的两种变体:一种基于纯蒸馏,另一种基于更复杂任务的纠错方法,即学生纠正老师的单一偏见决定,以实现去偏输出。我们的方法是通用的,可以应用于黑盒和白盒LLM。此外,我们证明,我们的紧凑型、仅限编码器的学生模型可以优于更大的、有偏见的教师模型,用更少的参数获得更好的结果。

1 引言

2 多选提示

3 LLM中的固有偏差

4 消除偏见的师生训练

5 实验设置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值