本文是LLM系列文章,针对《Teacher-Student Training for Debiasing: General Permutation Debiasing for Large Language Models》的翻译。
师生去偏训练:大型语言模型的一般置换去偏
摘要
大型语言模型(LLM)在NLP任务中展示了令人印象深刻的零样本能力和多功能性,但它们有时无法为特定任务保持关键的不变性。一个例子是排列灵敏度,其中LLM的输出可能根据输入选项的顺序而显著变化。虽然去偏技术可以缓解这些问题,并产生更好的性能和可靠性,但它们在推理时往往会带来高昂的计算成本。本文解决了这种推理时的低效问题。其目的是将计算密集型、去偏的教师模型的能力提取为更紧凑的学生模型。我们探索了学生模型的两种变体:一种基于纯蒸馏,另一种基于更复杂任务的纠错方法,即学生纠正老师的单一偏见决定,以实现去偏输出。我们的方法是通用的,可以应用于黑盒和白盒LLM。此外,我们证明,我们的紧凑型、仅限编码器的学生模型可以优于更大的、有偏见的教师模型,用更少的参数获得更好的结果。