本文是LLM系列文章,针对《Reducing Large Language Model Bias with Emphasis on “Restricted
Industries”
摘要
尽管大型语言模型的能力越来越强,但人们对它们产生的偏见表示担忧。在本文中,我们提出了一种新的、自动化的机制,通过在偏差生产者的视角下和在数据有限的“受限行业”的背景下增加指定的数据集来消除偏差。我们还创建了两个新的额外指标,mb指数和db指数,以量化偏差,考虑到偏差是由于固有的模型架构和数据集质量造成的。
1 引言
2 文献综述
3 方法
4 方法
5 结果与讨论
6 局限性和未来研究方向
7 结论
在不断发展的自然语言处理领域,一个紧迫的问题是大型语言模型中存在的偏见。在本文中,我们提出了一种机制,通过基于偏差生成器的自动增强算法来解决大型语言模型中由训练和微调数据引起的偏差。我们还提供了相应地通过db索引和mb索引量化数据集和大型语言模型固有偏差的方法。
我们希望通过创建一个在线平台来继续使我们在本文中的工作民主化,在这个平台