Reducing Large Language Model Bias with Emphasis on “Restricted Industries”

本文关注大型语言模型的偏见问题,尤其是受限行业中的偏见。研究提出了一种自动化机制,通过增强特定数据集来减少模型的偏见,并引入了mb和db指数来量化模型和数据集的偏差。研究还计划建立一个在线平台,以便进一步评估和减轻NLP系统中的偏见。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Reducing Large Language Model Bias with Emphasis on “Restricted
Industries”

减少大型语言模型的偏差,强调“受限行业”:自动数据集增强和偏见量化

摘要

尽管大型语言模型的能力越来越强,但人们对它们产生的偏见表示担忧。在本文中,我们提出了一种新的、自动化的机制,通过在偏差生产者的视角下和在数据有限的“受限行业”的背景下增加指定的数据集来消除偏差。我们还创建了两个新的额外指标,mb指数和db指数,以量化偏差,考虑到偏差是由于固有的模型架构和数据集质量造成的。

1 引言

2 文献综述

3 方法

4 方法

5 结果与讨论

6 局限性和未来研究方向

7 结论

在不断发展的自然语言处理领域,一个紧迫的问题是大型语言模型中存在的偏见。在本文中,我们提出了一种机制,通过基于偏差生成器的自动增强算法来解决大型语言模型中由训练和微调数据引起的偏差。我们还提供了相应地通过db索引和mb索引量化数据集和大型语言模型固有偏差的方法。
我们希望通过创建一个在线平台来继续使我们在本文中的工作民主化,在这个平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值