Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding

本文介绍了一种名为SPACE的方法,旨在加速大型语言模型(LLM)的推理速度,通过半自动推理和推测解码实现无损加速。SPACE在HumanEval-X上实现了2.7x-4.0x的推理速度提升,同时保持输出质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Generation Meets Verification: Accelerating Large Language Model
Inference with Smart Parallel Auto Correct Decoding》的翻译。

生成满足验证:使用智能并行自动纠错解码加速大型语言模型推理

摘要

本研究旨在加快具有数十亿参数的大型语言模型(LLM)的推理速度。我们提出了一种用于实现LLM无损加速的智能并行自动校正dEcoding(SPACE)方法。通过集成半自动推理和推测解码功能,SPACE独特地使自回归LLM能够并行化token生成和验证。这是通过专门的半自回归监督微调过程实现的,该过程使现有LLM具备同时预测多个token的能力。此外,自校正解码算法有助于在单个模型调用内同时生成和验证token序列。通过对一系列LLM的广泛实验,SPACE在HumanEval-X上展示了2.7x-4.0x的推理加速,同时保持了输出质量。代码发布于https://github.com/cteant/SPACE

1 引言

2 相关工作

3 方法

4 实验

5 结论

在本文中&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值