AutoRE: Document-Level Relation Extraction with Large Language Models

AutoRE是一种端到端的DocRE模型,采用RHF范式,不依赖预定义关系,使用QLoRA进行高效微调。在DocRED数据集上取得SOTA结果,优于TAG 10.03%和9.03%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《AutoRE: Document-Level Relation Extraction with Large Language
Models》的翻译。

AutoRE:基于大型语言模型的文档级关系提取

摘要

大型语言模型(LLM)在理解和生成文本方面表现出了非凡的能力,促使许多研究人员将其用于信息提取(IE)目的,包括关系提取(RE)。尽管如此,大多数现有的方法主要是为句子级关系提取(SentRE)任务设计的,该任务通常在一个句子中包含一组有限的关系和三元组事实。此外,某些方法将关系视为集成到提示模板中的候选选择,导致在处理文档级关系提取(DocRE)任务时处理效率低下,性能次优,这需要处理分布在给定文档中的多个关系和三元组事实,这带来了明显的挑战。为了克服这些限制,我们引入了AutoRE,这是一个端到端的DocRE模型,它采用了一种新的RE提取范式RHF(Relation HeadFacts)。与现有方法不同,AutoRE不依赖于已知关系选项的假设,使其更能反映现实世界的场景。此外,我们还使用参数高效微调(PEFT)算法(QLoRA)开发了一个易于扩展的RE框架。我们在RE-DocRED数据集上的实验展示了AutoRE的最佳性能ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值