ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models

本文是LLM系列文章,针对《ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models》的翻译。

ALoRA:为微调大型语言模型分配低秩自适应

摘要

参数有效微调(PEFT)在大语言模型时代因其有效性和效率而被广泛研究。低秩自适应(LoRA)作为一种流行且具有代表性的方法,表现出了值得称赞的性能。然而,它是用固定的内在秩来实现的,这可能不是下游任务的理想设置。认识到需要更灵活的下游任务自适应,我们将LoRA的方法扩展到一种创新的方法,我们称之为分配低秩自适应(ALoRA),该方法能够在自适应过程中对固有秩进行动态调整。首先,我们提出了一种新的方法AB-LoRA,它可以有效地估计每个LoRA秩的重要性得分。其次,在AB LoRA的指导下,我们逐步修剪大量且对LoRA产生负面影响的LoRA等级,并将修剪后的LoRA预算分配给需要更高等级的重要Transformer模块。我们在各种任务上进行了实验,实验结果表明,我们的ALoRA方法可以在具有可比可调参数的情况下优于最近的基线。

1 引言

2 相关工作

3 方法

4 实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值