REMIND Your Neural Network to Prevent Catastrophic Forgetting

本文是神经网络系列文章,针对《REMIND Your Neural Network to Prevent Catastrophic Forgetting》的翻译。

摘要

人们一生都在学习。然而,逐步更新传统的神经网络会导致灾难性的遗忘。一种常见的治疗方法是重放,它的灵感来自大脑如何巩固记忆。重播涉及在新实例和旧实例的混合上对网络进行微调。虽然有神经科学证据表明大脑会回放压缩的记忆,但现有的卷积网络方法会回放原始图像。在这里,我们提出了REMIND,这是一种受大脑启发的方法,可以使用压缩的表示进行有效的重放。REMIND是以在线方式进行训练的,这意味着它一次学习一个例子,这更接近于人类的学习方式。在相同的约束条件下,在ImageNet ILSVRC-2012数据集上,REMIND在增量类学习方面优于其他方法。我们探讨了REMIND对已知会导致灾难性遗忘的数据排序方案的稳健性。我们通过开创性的视觉问答(VQA)在线学习来展示REMIND的通用性。

1 引言

2 问题定义

3 相关工作

4 REMIND:使用内存索引重放

5 实验:图像分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值