本文是LLM系列文章,针对《Dark Experience for General Continual Learning: a Strong, Simple Baseline》的翻译。
摘要
持续学习激发了大量的方法和评估环境;然而,它们中的大多数忽略了实际场景的属性,在实际场景中,数据流不能被塑造为一系列任务,离线训练是不可行的。我们致力于一般持续学习(GCL),即任务边界模糊,领域和类别分布逐渐或突然发生变化。我们通过将排练与知识蒸馏和规则化相结合来解决这一问题;我们的简单基线Dark Experience Replay与整个优化轨迹中采样的网络logits相匹配,从而提高了与过去的一致性。通过对标准基准和新的GCL评估设置(MNIST-360)进行广泛分析,我们表明,这样一个看似简单的基准优于综合方法,并利用了有限的资源。我们进一步探索了目标的泛化能力,表明其正则化不仅仅是性能上的好处。
代码位于https://github.com/aimagelab/mammoth。