AdaPrompt: Adaptive Model Training for Prompt-based NLP

本文是LLM系列文章,针对《AdaPrompt: Adaptive Model Training for Prompt-based NLP》的翻译。

AdaPrompt:基于提示的NLP的自适应模型训练

摘要

提示学习以其处理零样本和小样本NLP任务的能力,在社区中受到了广泛关注。其主要思想是通过将NLP下游任务映射到自然语言提示中,然后由预训练的语言模型(PLM)填充,来弥合NLP下游工作与语言建模(LM)之间的差距。然而,对于提示学习,NLP任务和预训练之间仍然存在两个显著的差距。首先,在LM预训练期间,提示信息不一定充分存在。其次,在预训练过程中,任务特定的数据不一定能很好地表示出来。我们通过提出AdaPrompt来解决这两个问题,该方法利用任务和提示特征自适应地检索外部数据,用于PLM的连续预训练。此外,我们还利用自然语言推理模型中的知识来推导自适应动词。在五个NLP基准上的实验结果表明,AdaPrompt可以在小样本设置下提高标准PLM。此外,在零样本设置中,我们的方法比基于提示的标准方法的相对误差降低了26.35%。

1 引言

2 相关工作

3 方法

4 实验

5 结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值