本文是LLM系列文章,针对《AdaPrompt: Adaptive Model Training for Prompt-based NLP》的翻译。
摘要
提示学习以其处理零样本和小样本NLP任务的能力,在社区中受到了广泛关注。其主要思想是通过将NLP下游任务映射到自然语言提示中,然后由预训练的语言模型(PLM)填充,来弥合NLP下游工作与语言建模(LM)之间的差距。然而,对于提示学习,NLP任务和预训练之间仍然存在两个显著的差距。首先,在LM预训练期间,提示信息不一定充分存在。其次,在预训练过程中,任务特定的数据不一定能很好地表示出来。我们通过提出AdaPrompt来解决这两个问题,该方法利用任务和提示特征自适应地检索外部数据,用于PLM的连续预训练。此外,我们还利用自然语言推理模型中的知识来推导自适应动词。在五个NLP基准上的实验结果表明,AdaPrompt可以在小样本设置下提高标准PLM。此外,在零样本设置中,我们的方法比基于提示的标准方法的相对误差降低了26.35%。