PRETRAINED LANGUAGE MODEL IN CONTINUAL LEARNING: A COMPARATIVE STUDY

本文是LLM系列文章,针对《PRETRAINED LANGUAGE MODEL IN CONTINUAL LEARNING: A COMPARATIVE STUDY》的翻译。

摘要

连续学习(CL)是一种设置,在这种设置中,模型从输入数据流中学习,同时避免忘记先前学习的知识。预训练语言模型已经成功地应用于不同自然语言问题的连续学习中。随着许多持续学习方法和PLM的快速发展,理解和理清它们的相互作用对于持续提高持续学习成绩至关重要。在本文中,我们在2个典型的增量设置中,在3个基准上,彻底比较了5种PLM和4种CL方法组合的持续学习性能。我们广泛的实验分析揭示了PLM和CL方法之间有趣的性能差异。此外,我们的代表性探索分析以分层和任务的方式剖析了PLM的性能特征,揭示了它们的内层被遗忘的程度,以及不同CL方法对每一层的影响。最后,我们的观察和分析揭示了一些重要的研究问题,这些问题将为有效的持续学习技术的设计提供信息和指导。

1 引言

2 背景

3 PLMS的基准持续学习

4 挖掘BERT中的层秘密

5 理解经验重放的有效性

6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值