Investigating Forgetting in Pre-Trained Representations Through Continual Learning

本文是LLM系列文章,针对《Investigating Forgetting in Pre-Trained Representations Through Continual Learning》的翻译。

通过持续学习研究预训练表征中的遗忘

摘要

表征遗忘是指在持续训练过程中,语境化表征的漂移。直观地说,表征遗忘会影响预先训练的语言模型中存储的一般知识,但具体效果尚不清楚。在本文中,我们研究了表示遗忘对预先训练的语言模型的通用性的影响,即处理未来下游任务的潜在能力。具体来说,我们设计了三个度量标准,包括整体一般性破坏(GD)、句法知识遗忘(SynF)和语义知识遗忘(SemF),来衡量一般知识在持续学习中的演变。通过大量的实验,我们发现在各种预先训练的LMs中,普遍性被破坏,句法和语义知识在不断学习中被遗忘。基于我们的实验和分析,我们进一步得到了缓解一般知识遗忘的两个见解:1)最初对一般语言任务的训练可以缓解一般知识忘记;2) 与只考虑排练或正则化的方法相比,混合连续学习方法可以减轻通用性的破坏,并保持更多的通用知识。

1 引言

2 相关工作

3 方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值