本文是LLM系列文章,针对《Naive Bayes-based Context Extension for Large Language Models》的翻译。
摘要
大型语言模型(LLM)已经显示出很有前途的上下文学习能力。然而,传统的上下文学习(ICL)方法往往受到Transformer架构长度限制的阻碍,这在试图有效集成大量演示示例的监督时带来了挑战。在本文中,我们介绍了一种新的框架,称为基于朴素贝叶斯的上下文扩展(NBCE),通过显著扩展现有LLM的上下文大小,使其能够在增加演示次数的情况下执行ICL。重要的是,这种扩展不需要微调或依赖于特定的模型架构,同时保持线性效率。NBCE最初将上下文拆分为大小相等的窗口,以适应目标LLM的最大长度。然后,它引入了一种投票机制来选择最相关的窗口,作为后验上下文。最后,利用贝叶斯定理生成测试任务。我们的实验结果表明,NBCE显著提高了性能,特别是随着演示示例数量的增加,始终优于其他方法。NBCE代码将公开。代码NBCE位于:https://github.com/amurtadha/NBCE-master