本文是LLM系列文章,针对《Transformer-Lite: High-efficiency Deployment of Large Language
Models on Mobile Phone GPUs》的翻译。
摘要
大语言模型(LLM)广泛应用于智能助手、文本摘要、翻译和手机多模态等任务。然而,当前用于设备上LLM部署的方法保持较慢的推理速度,这导致较差的用户体验。为了促进LLM在设备GPU上的高效部署,我们提出了四种优化技术:(a)支持动态形状模型推理的基于符号表达的方法;(b) 操作员优化和执行优先级设置,以提高推理速度并减少电话滞后;(c) 称为E0M4的FP4量化方法,以减少去量化开销;(d) 一种基于子张量的技术,以消除在LLM推断之后复制KV缓存的需要。此外,我们在移动推理引擎Transformer Lite中实现了这些方法,该引擎与高通公司和MTK处理器都兼容。我们使用LLM评估了Transformer Lite的性能,LLM具有从2B到14B不等的各种架构和参数。具体而言,我们为ChatGLM2 6B实现了121token/s和14token/s的预填充和解码速度,为较小的Gemma 2B分别实现了330token/s和30token/s的解码速度。与基于CPU的FastL