本文是LLM系列文章,针对《LARGE LANGUAGE MODELS FOR CROWD DECISION MAKING
BASED ON PROMPT DESIGN STRATEGIES USING CHATGPT
基于CHATGPT提示设计策略的群体决策大语言模型:模型、分析和挑战
摘要
社交媒体和互联网有潜力被用作丰富决策解决方案的意见来源。群体决策(CDM)是一种能够通过情绪分析从纯文本(如社交媒体平台上发布的评论)中推断意见和决策的方法。目前,大型语言模型(LLM)的出现和潜力促使我们探索自动理解书面文本的新场景,也称为自然语言处理。本文分析了基于提示设计策略的ChatGPT的使用,以帮助CDM过程提取意见和做出决策。我们将ChatGPT集成到CDM过程中,作为一种灵活的工具来推断文本中表达的意见,在决策模型基于提示设计策略的情况下提供数字或语言评估。我们包括了一个具有类别本体作为标准的多标准决策场景。我们还将ChatGPT视为一个端到端CDM模型,能够提供对备选方案的一般意见和评分。我们对从TripAdvisor(TripR-2020Large数据集)中提取的真实数据进行了实证实验。结果分析表明,使用ChatGPT开发质量决策模型是一个很有前途的分支。最后,我们讨论了在CDM过程中使用LLM在一致性、敏感性和可解释性方面的挑战,为未来的研究提出了悬而未决的问题。