本文是LLM系列文章,针对《Emerging Synergies Between Large Language Models and Machine Learning in Ecommerc Recommendations》的翻译。
摘要
随着电子商务和网络应用程序的蓬勃发展,推荐系统已经成为我们日常生活的重要组成部分,根据用户的喜好提供个性化推荐。尽管深度神经网络(DNN)通过模拟用户和项目之间的交互并结合其文本信息,在改进推荐系统方面取得了重大进展,但这些基于DNN的方法仍然存在一些局限性,例如难以有效理解用户的兴趣和捕获文本信息。不可能概括到不同的可见/不可见推荐场景及其预测的原因。与此同时,以ChatGPT和GPT-4为代表的大型语言模型(LLM)的出现,由于其在语言理解和生成的基本任务中的卓越能力,以及令人印象深刻的泛化和推理能力,使自然语言处理(NLP)和人工智能(AI)领域发生了革命性的变化。因此,最近的研究试图利用LLM的力量来改进推荐系统。鉴于这一研究方向在推荐系统领域的快速发展,迫切需要对现有的LLM驱动的推荐系统进行系统审查,供相关领域的研究人员和从业者深入了解。更具体地说,我们首先介绍了一种使用LLM作为特征编码器来学习用户和项目表示的代表性方法。然后,我们从预训练、微调和提示三个范式回顾了用于协同过滤增强推荐系统的LLM技术的