Emerging Synergies Between Large Language Models and Machine Learning in Ecommerce Recommendations

本文是LLM系列文章,针对《Emerging Synergies Between Large Language Models and Machine Learning in Ecommerc Recommendations》的翻译。

大型语言模型和机器学习在电子商务推荐中的协同作用

摘要

随着电子商务和网络应用程序的蓬勃发展,推荐系统已经成为我们日常生活的重要组成部分,根据用户的喜好提供个性化推荐。尽管深度神经网络(DNN)通过模拟用户和项目之间的交互并结合其文本信息,在改进推荐系统方面取得了重大进展,但这些基于DNN的方法仍然存在一些局限性,例如难以有效理解用户的兴趣和捕获文本信息。不可能概括到不同的可见/不可见推荐场景及其预测的原因。与此同时,以ChatGPT和GPT-4为代表的大型语言模型(LLM)的出现,由于其在语言理解和生成的基本任务中的卓越能力,以及令人印象深刻的泛化和推理能力,使自然语言处理(NLP)和人工智能(AI)领域发生了革命性的变化。因此,最近的研究试图利用LLM的力量来改进推荐系统。鉴于这一研究方向在推荐系统领域的快速发展,迫切需要对现有的LLM驱动的推荐系统进行系统审查,供相关领域的研究人员和从业者深入了解。更具体地说,我们首先介绍了一种使用LLM作为特征编码器来学习用户和项目表示的代表性方法。然后,我们从预训练、微调和提示三个范式回顾了用于协同过滤增强推荐系统的LLM技术的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值