本文是LLM系列文章,针对《A Large Language Model Enhanced Sequential Recommender for Joint Video and Comment Recommendation》的翻译。
摘要
在在线视频平台中,阅读或撰写有趣视频的评论已成为视频观看体验的重要组成部分。然而,现有的视频推荐系统主要对用户与视频的互动行为进行建模,在用户行为建模中缺乏对评论的考虑。
在本文中,我们提出了一种新的推荐方法,称为LSVCR,通过利用用户与视频和评论的互动历史,共同进行个性化的视频和评论推荐。具体来说,我们的方法由两个关键组件组成,即顺序推荐(SR)模型和补充大语言模型(LLM)推荐器。SR模型作为我们方法的主要推荐骨干(保留在部署中),允许进行高效的用户偏好建模。同时,我们利用LLM推荐器作为补充组件(在部署中丢弃),从异构交互行为中更好地捕获潜在的用户偏好。为了综合SR模型和补充LLM推荐器的优点,我们设计了一个两阶段的训练范式。第一阶段是个性化偏好对齐,旨在对齐来自两个组件的偏好表示,从而增强SR模型的语义。第二阶段是面向推荐的微调,其中根据特定目标对对准增强的SR模型进行微调。在视频和评论推荐任务中进行的大量实验证明了LSVCR的有效性。此外,快手平台上的