A Large Language Model Enhanced Sequential Recommender for Joint Video and Comment Recommendation

本文是LLM系列文章,针对《A Large Language Model Enhanced Sequential Recommender for Joint Video and Comment Recommendation》的翻译。

一种用于视频和评论联合推荐的大语言模型增强序列推荐器

摘要

在在线视频平台中,阅读或撰写有趣视频的评论已成为视频观看体验的重要组成部分。然而,现有的视频推荐系统主要对用户与视频的互动行为进行建模,在用户行为建模中缺乏对评论的考虑。
在本文中,我们提出了一种新的推荐方法,称为LSVCR,通过利用用户与视频和评论的互动历史,共同进行个性化的视频和评论推荐。具体来说,我们的方法由两个关键组件组成,即顺序推荐(SR)模型和补充大语言模型(LLM)推荐器。SR模型作为我们方法的主要推荐骨干(保留在部署中),允许进行高效的用户偏好建模。同时,我们利用LLM推荐器作为补充组件(在部署中丢弃),从异构交互行为中更好地捕获潜在的用户偏好。为了综合SR模型和补充LLM推荐器的优点,我们设计了一个两阶段的训练范式。第一阶段是个性化偏好对齐,旨在对齐来自两个组件的偏好表示,从而增强SR模型的语义。第二阶段是面向推荐的微调,其中根据特定目标对对准增强的SR模型进行微调。在视频和评论推荐任务中进行的大量实验证明了LSVCR的有效性。此外,快手平台上的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值