本文是LLM系列文章,针对《Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study》的翻译。
摘要
自然语言到可视化(NL2Vis)任务旨在将自然语言描述转换为基础表的视觉表示,使用户能够从大量数据中获得见解。最近,已经为NL2Vi开发了许多基于深度学习的方法。尽管这些方法做出了相当大的努力,但在可视化来自看不见的数据库或跨越多个表的数据方面仍然存在挑战。本文从大型语言模型(LLM)卓越的生成能力中获得灵感,进行了一项实证研究,以评估其在生成可视化方面的潜力,并探索上下文学习提示对增强这项任务的有效性。特别是,我们首先探讨了将结构化表格数据转换为顺序文本提示的方法,以便将它们输入LLM,并分析哪些表内容对NL2VI的贡献最大。我们的研究结果表明,将结构化表格数据转换为程序是有效的,并且在制定提示时考虑表模式是至关重要的。此外,我们使用NL2Vis基准(即nvBench),对照最先进的方法,评估了两种类型的LLM:微调模型(例如T5 Small)和仅推理模型(例如GPT-3.5)。实验结果表明,LLM优于基线,仅推理模型始终表现出性能改进