Large Language Models as Conversational Movie Recommenders: A User Study

本文是LLM系列文章,针对《Large Language Models as Conversational Movie Recommenders:
A User Study》的翻译。

大语言模型作为会话电影推荐者的用户研究

摘要

本文探讨了使用大型语言模型(LLM)从用户那里进行个性化电影推荐的有效性在线实地实验中的观点。我们的研究结合了受试者之间的即时消费评估和历史消费评估,以及受试者内部推荐情景评估。通过检查160名活跃用户的对话和调查响应数据,我们发现LLM提供了很强的推荐解释性,但缺乏整体个性化、多样性和用户信任。我们的研究结果还表明,不同的个性化提示技术不会显著影响用户感知的推荐质量,但用户观看的电影数量起着更重要的作用。此外,LLM在推荐鲜为人知或小众电影方面表现出更强的能力。通过定性分析,我们确定了与正面和负面用户互动体验相关的关键对话模式,并得出结论,提供个人背景和例子对于从LLM获得高质量的推荐至关重要。

1 引言

2 相关工作

3 研究设计

4 结果

5 讨论

6 结论

在这项研究中,我们对基于LLM的电影推荐器进行了一项现场实验,使用零样本、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值