本文是LLM系列文章,针对《Large Language Models as Conversational Movie Recommenders:
A User Study》的翻译。
摘要
本文探讨了使用大型语言模型(LLM)从用户那里进行个性化电影推荐的有效性在线实地实验中的观点。我们的研究结合了受试者之间的即时消费评估和历史消费评估,以及受试者内部推荐情景评估。通过检查160名活跃用户的对话和调查响应数据,我们发现LLM提供了很强的推荐解释性,但缺乏整体个性化、多样性和用户信任。我们的研究结果还表明,不同的个性化提示技术不会显著影响用户感知的推荐质量,但用户观看的电影数量起着更重要的作用。此外,LLM在推荐鲜为人知或小众电影方面表现出更强的能力。通过定性分析,我们确定了与正面和负面用户互动体验相关的关键对话模式,并得出结论,提供个人背景和例子对于从LLM获得高质量的推荐至关重要。
1 引言
2 相关工作
3 研究设计
4 结果
5 讨论
6 结论
在这项研究中,我们对基于LLM的电影推荐器进行了一项现场实验,使用零样本、