Large Language Models are In-Context Molecule Learners

本文是LLM系列文章,针对《Large Language Models are In-Context Molecule Learners》的翻译。

摘要

大型语言模型(LLM)在生物化学任务中表现出了非凡的性能,尤其是分子字幕翻译任务,该任务旨在弥合分子与自然语言文本之间的差距。然而,先前使LLM适应分子字幕翻译任务的方法需要额外的特定领域的预训练阶段,在分子空间和文本空间之间存在弱对齐,或者对LLM的规模提出了严格的要求。为了解决这些挑战,我们提出了上下文分子适应(ICMA),作为一种新的范式,LLM可以通过上下文分子调节从上下文示例中学习分子文本对齐。具体来说,ICMA包括以下三个阶段:混合上下文检索、检索后重新排序和上下文分子调整。最初,混合上下文检索利用BM25标题检索和分子图检索来检索信息上下文示例。此外,我们还提出了使用序列反转和随机漫步进行检索后重新排序,以进一步提高检索结果的质量。最后,In-Context Molecule Tuning通过检索到的例子解锁了LLM的非文本分子学习能力,并将LLM的参数用于分子字幕翻译任务。实验结果表明,ICMA可以使LLM在没有额外训练语料库和复杂结构的情况下实现最先进的或可比的性能,这表明LLM本质上是上下文分子学习者。

1 引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值