本文是LLM系列文章,针对《LLMTune: Accelerate Database Knob Tuning with Large Language Models》的翻译。
摘要
数据库Knob 调优是数据库社区中的一个关键挑战,旨在优化Knob值(即配置),以提高特定工作负载的数据库性能。现代数据库管理系统(DBMS)通常具有数百个可调Knob,每个Knob都有连续或离散的值,这对数据库管理员(DBA)推荐最佳配置提出了重大挑战。因此,已经开发了一系列基于机器学习(ML)的调整方法来自动化该配置过程。即使随着各种优化器的引入,实际应用中出现了一个新问题:这些方法通常需要大量的工作负载运行才能获得令人满意的性能,这一过程既耗时又耗费资源。这种低效率很大程度上源于优化配置通常与默认设置有很大不同,因此在调优过程中需要多次迭代。认识到这一点,我们认为,一个有效的起点可以显著减少低效区域的冗余勘探,从而可能加快优化器的调整过程。基于这一假设,我们介绍了LLMTune,这是一种基于大型语言模型(LLM)的配置生成器,旨在为新的工作负载生成初始的高质量配置。然后,这些生成的配置可以作为各种基础优化器的起点,加速它们的调优过程。为了获得LLMTune监督微调的训练数据,我们设计了一